

V Semester B.Sc. Examination, November/December 2014 (New Scheme) (2013-14 & Onwards) PHYSICS - VI

Astrophysics, Solid State Physics and Semiconductor Physics

e: 3 Hours

Max. Marks: 70

Instruction: Answer 5 questions from Part - A, 5 questions from Part - B and 5 questions from Part - C.

PART-A

Answer any five of the following. Each question carries eight marks. BMSCW a) State and explain Virial theorem. $(5 \times 8 = 40)$ b) Derive mass-luminosity relation of a star. (3+5)

a) What is Supernova? Explain Supernova explosion. b) Distinguish between type - I and type - II supernova.

a) State and explain Moseley's law. Mention any two importances of Moseley's

b) Distinguish between the continuous and characteristic X-ray spectra. (4+4)

a) Define Hall voltage. Derive an expression for Hall field in the case of metals.

b) What is meant by critical magnetic field in super conductivity ? Explain.

a) What is Kronig-Penney modes? Explain.

b) Derive an expression for electrical conductivity on the basis of free electron theory. State Wiedemann-Franz law in the case of metals. (2+6)

a) What are intrinsic and extrinsic semiconductors?

b) Obtain an expression for electron concentration in an intrinsic semiconductor.

(2+6)

a) Explain the variation of width of depletion with applied forward and reverse

b) What is static resistance of a p-n junction diode? Explain.

a) Distinguish between the saturation and cut-off regions of a transistor.

b) Explain the working of an N-P-N transistor in CE mode as an amplifier.

1000000

PART-B

$N_A = 6.06 \times 10^{26} kg - mole$	$e = 1.6 \times 10^{-19}C$	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
$h = 6.63 \times 10^{-34} JS$	$m_e = 9.1 \times 10^{-31} \text{ kg}$	
$k = 1.38 \times 10^{-23} JK^{-1}$	$C = 3 \times 10^8 \text{ms}^{-1}$	

Answer any five of the following. Each question carries four marks.

- Assuming that the dimmest star visible to the naked eye has a magnitude of about compare its brightness with that of a brightest star whose magnitude is – 4.
- 10. If the luminosity and surface temperature of the star are 26.1 L_{\odot} and 10000 respectively, calculate its Radius, given Stefan-Boltzman's constant $\sigma = 5.67 \times 10^{-8} \text{ wm}^{-2} \text{ k}^{-4}$ and luminosity of sun $3.9 \times 10^{26} \text{ W}$.
- 11. Calculate the rotational kinetic energy of a neutron star of mass 2.5 M $_\odot$, rad 1.5 R $_\odot$ and frequency 25 rps. Given : Mass Sylves sun and radius of the sun 21.989 \times 10 30 kg and 6.9599 \times 10 8 m respectively.
- 12. X-rays of wavelength 0.3Å undergo a 60° compton scattering. Find the wavelength of the photon after scattering.
- 13. Calculate the Fermi energy and Fermi velocity for lithium, given density to 534 kgm⁻³ and atomic weight to be 6.931 amu.
- 14. Find the mobility of electrons in copper assuming that each atom contributes of free electron for conduction. Resistivity of copper is 1.7 × 10⁻⁸ ohm m. Atom weight of copper is 63.54 × 10³ kg mol⁻¹ and its density is 8960 kgm⁻³.
- A 24 V, 600 mw Zener diode is to be used for providing a 24 V stabilized supply
 a variable load. If the input voltage is 32 V, calculate the value of series resistance.
- 16. The following quantities are measured in CE amplifier circuit with output ASS short circuited : $I_b = 10 \,\mu\text{A}$, $I_c = 1 \,\text{mA}$, $V_{be} = 10 \,\text{mV}$. Calculate h_{fe} and h_{ie} .

PART-C

- 17. Answer any five of the following. Each question carries two marks.
 - a) The brightness of a star is not a good indicator of its distance. Why?
 - b) The sun is a mediocre member of the main sequence stars. Justify.
 - c) A black hole cannot be seen. Explain why?
 - d) Can ordinary light be used for crystal diffraction? Explain.
 - e) Are ionic crystals good electrical conductors? Explain.
 - f) Are the energy levels completely filled below the Fermi energy level at Abso zero? Explain.
 - g) Are there holes in the n-type semiconductor? Explain.
 - h) Can the emitter and collector regions of a transistor be interchanged? Explain